

Specifications

Monitored Voltage:	$\begin{aligned} & 100-120 \mathrm{~V}, 200-240 \mathrm{~V}, \\ & 380-415 \mathrm{~V}, 440-460 \mathrm{~V} \text {, } \\ & 480 \mathrm{VAC} 40-70 \mathrm{~Hz} \\ & \text { (Fuse } 0,5 \mathrm{~A} \text {) } \end{aligned}$
Optional Separate Auxiliary Voltage AC:	$\begin{aligned} & 100-120 \mathrm{~V}, 200-240 \mathrm{~V}, \\ & 380-415 \mathrm{~V}, 440-460 \mathrm{~V} \text {, } \\ & 480 \mathrm{VAC} 40-70 \mathrm{~Hz} \\ & \text { (Fuse } 0,5 \mathrm{~A} \text {) } \end{aligned}$
Optional Separate	24-60VDC (Fuse 0,5A)
Auxiliary Voltage DC:	110-220VDC (Fuse 1A)
Supply tolerance:	+10\%, -20\%
Power rating:	5 VA
Current Input:	1 ACT or 5ACT, <0,1VA
Contact rating:	AC: 100VA -250V/2A max. DC: 50W -100V/1A max.
Adjustments:	Depending on the selected model (see page 2)
Output kW range:	Any \% of the scale
Analogue output 1: (see page 3 for available outputs)	mA : Up to $20 \mathrm{~mA}, \max 500 \mathrm{R}$ V: Up to $10 \mathrm{~V}, \min 100 \mathrm{kohm}$ (other on request)
Analogue output 2: (see page 3 for available outputs)	$\mathrm{mA}:$ Up to $20 \mathrm{~mA}, \max 500 \mathrm{R}$ V: Up to 10V, min 5kohm or optional 500 ohm (other on request)
Accuracy:	Class 0,5
Temperature:	-20 to $+70^{\circ} \mathrm{C}$
Humidity, relative:	0-95\%
Weight:	0.6 kgs
Front protection:	IP21
Flammability:	UL94-V0

The unit meets EN 60255-27 Cat. III, Pollution degree 2 and the relevant environmental and EMC tests specified in EN 60255-26 to comply with the requirements of the major Classification Societies.

Related information:
The KCW18x series are also available for panel mounting as KPW18x series.

- Precision Overload Protection, not affected by heavily distorted waveforms
- Total processing time less than 50 mS
- 3 or 4-wire systems. Definite time trip delays
- Triple relay operation gives more flexibility
- Up to two individual very fast analogue output signals (<50mS), (optional)
- Wide range setting of high overload contact hysteresis
- DIN96 Slave Indicator with status LEDs (optional)

Description

The digitally controlled KCW18x range provides precision (1.0\%) overload protection and monitoring of three phase generators or motors.

Available for 3-phase 3-wire (2W3) and 4-wire (3W4) systems.
The unit measures the voltage and current true r.m.s. value, and accuracy is independent of any wave form distortion.

The standard models takes the auxiliary supply voltage from the monitored voltage (terminal $1 \& 2$).
It can also be delivered with optional separate AC or DC auxiliary voltage (terminal 26 \& 27), but that must be specified when ordering (see page 3 for ordering code for separate Aux. Supply).

User settable trip levels and delays. Colour of LEDs indicate alarm status. Alarm LEDs flash during count-down.

LED status		
Power	Low	High
Normal	Alarm	Alarm

Start of monitoring function is delayed when power is switched on (default 2 secs delay). In this way false tripping during power up is avoided.

The DIN-rail mounted instrument reads the power level directly in kW . The optional slave watt-meter and the triple-zone status LEDs at a glance gives the clear safety message:

$$
\begin{aligned}
& - \text { HIGH } \\
& \text {-NORMAL } \\
& \text {-LOW }
\end{aligned}
$$

OUTPUTS

Up to two individual very fast analogue output signals (optional) proportional to kW range (see page 2 for models with outputs). If output is used for remote meter reading, we recommend $0-1 \mathrm{~mA}$ for the slave indicator.

RELAY OUTPUTS

Relay operation depends on the selected model (see page 2). Other combinations are available on request.

Description

KCW181E

Both relays can be used for non－essential load release or as a start／stop signal to a standby generator etc．A wide range overload contact hysteresis can be set to enable R2 to be used for a non－essential load to be reconnected or as a standby generator stop signal．Relay R3 is an additional relay that can be used for local indication，as an input to an alarm system etc．

A trip LED flashes when the trip level is passed，the relay trips when the delay has elapsed．The timer resets if the fault is removed during countdown．The High／Low relays can be used to regulate power in $A C$ systems．

Relay Operation The relay operation is delayed in the arrow direction，the reset is instantaneous．Both trip levels can，independently，individually set over the scale range（ $0-100 \%$ FSD）．

Configuration：3－Phase，3－Wire（2W3）

Relay	Low	High	N／A	Fail Safe	Latch	Fixed Hysteresis	Adjustable Hysteresis	N／A	N／A
R1	X			X			X		
R2		X		X			X		
R3	X	X							

Models Latch Output 1 Output 2 KCW181E

Adjustments Low：
High： $0-100 \%$ of FSD $\begin{array}{ll} & 0-100 \% \text { of FSD } \\ \text { Hysteresis Low：} & 2-50 \% \text { FSD }\end{array}$ Hysteresis Low：$\quad 2-50 \%$ of FSD

Relays shown de－energised．R1 \＆R2 are fail－safe and energises when unit is powered．

KCW181FA－KCW181FB

Both relays can be used for non－essential load release or as a start／stop signal to a standby generator etc．A wide range overload contact hysteresis can be set to enable R2 to be used for a non－essential load to be reconnected or as a standby generator stop signal．Relay R3 is an additional relay that can be used for local indication，as an input to an alarm system etc．

A trip LED flashes when the trip level is passed，the relay trips when the delay has elapsed．The timer resets if the fault is removed during countdown．The High／Low relays can be used to regulate power in $A C$ systems．

Configuration：3－Phase，3－Wire（2W3）

Adjustments Low： High： Hysteresis Low：$\quad 2-50 \%$ of FSD Hysteresis High：$\quad 2-50 \%$ of FSD
Relays shown de－energised．R1\＆R2 are fail－safe and energises when unit is powered．

KCW184E

Both relays can be used for non－essential load release or as a start／stop signal to a standby generator etc．A wide range overload contact hysteresis can be set to enable R2 to be used for a non－essential load to be reconnected or as a standby generator stop signal．Relay R3 is an additional relay that can be used for local indication，as an input to an alarm system etc．

A trip LED flashes when the trip level is passed，the relay trips when the delay has elapsed．The timer resets if the fault is removed during countdown．The High／Low relays can be used to regulate power in AC systems．

Configuration：3－Phase，4－Wire（3W4）

Models Latch Output1 Output 2 KCW184E

Adjustments

 Low：High：
Hysteresis Low：
$\begin{array}{ll}\text { Hysteresis Low：} & 2-50 \% \text { of FSD } \\ \text { Hysteresis High：} & 2-50 \% \text { of FSD }\end{array}$
Relays shown de－energised．R1 \＆R2 are fail－safe and energises when unit is powered．

KCW184FA－KCW184FB

Both relays can be used for non－essential load release or as a start／stop signal to a standby generator etc．A wide range overload contact hysteresis can be set to enable R2 to be used for a non－essential load to be reconnected or as a standby generator stop signal．Relay R3 is an additional relay that can be used for local indication，as an input to an alarm system etc．

A trip LED flashes when the trip level is passed，the relay trips when the delay has elapsed．The timer resets if the fault is removed during countdown．The High／Low relays can be used to regulate power in AC systems．

Configuration：3－Phase，4－Wire（3W4）

Relay	Low	High	N／A	Fail Safe	Latch	Fixed Hysteresis	Adjustable Hysteresis	N／A	N／A
R1	X			X			X		
R2		X		X			X		
R3	X	X							

$\frac{\text { Models }}{\text { KCW184FA }} \frac{\text { Latch }}{-} \frac{\text { Output } 1}{\mathrm{X}}$ Output 2 KCW184FA

Adjustments

 Low：High： High：
Hysteresis Low：
Hysteresis High：
Relays shown de－energised．R1\＆R2 are fail－safe and energises when unit is powered．

Depending on application，select the model that matches the electrical installation． If none of the listed models fit your purpose please contact Megacon for customer adaptation．

Norway

Denmark

Connection Diagram

Connection Diagram with optional slave instrument

12 and 13 or by interrupting the auxiliary voltage supply.
NB! To ensure correct kW measurement, the voltage phase sequence and CT connections must be as shown on connection diagrams.

Analogue Output

The output signals are proportional to the meter reading (see page 2 for an overview of models and functions).

The signal is specifically intended as an input to a control system for monitoring or control.

Add suffix from table below to type designation to specify output required:

Outputs 1

O/P1	$\mathbf{0 - 1 0 m A}$	O/P11	$\mathbf{0 - 1 0 m A}$
O/P2	$\mathbf{0 - 2 0 m A}$	O/P12	$\mathbf{0 - 2 0 m A}$
O/P3	$\mathbf{4 - 2 0 m A}$	O/P13	$\mathbf{4 - 2 0 m A}$
O/P4	N/A	O/P14	N/A
O/P5	N/A	O/P15	N/A
O/P6	N/A	O/P16	N/A
O/P7	N/A	O/P17	N/A
O/P8	$\mathbf{0 - 1 0 V}$	O/P18	$\mathbf{0 - 1 0 V}$
O/P9	$\mathbf{0 , 2 - 1 0 V}$	O/P19	$\mathbf{0 , 2 - 1 0 V}$
O/P10	$\mathbf{4 , 3 - 2 0 m A}$	O/P20	$\mathbf{4 , 3 - 2 0 m A}$

Relay Contacts
Burden on supply
Switching voltage (Max)
Switching voltage (Rated)
Max I continuous
Max breaking capacity
Dielectric strength across
Open contacts

Connection
Terminal type
Wire max.

Screw Torque
Overload
Voltage

Current
: 170mW per relay : 400V AC, 300V DC
: 250V AC, 30V DC
: 6A RMS, 6A DC
: 1500VAAC, 18-120W DC
: 1000V RMS
: Terminal Clamp and Screw : T1-T4,
T26-T27: AWG 24-14,
T5-T10: AWG 12,
other terminals: AWG 24-12
: 0.5 Nm
: 1.2 x Un continuous
$2 \times$ Un for 10secs
$2.5 \mathrm{x} \ln$ continuous
$5 x \ln$ for 1secs (max 25A)

Dimensions

The MEGACON policy is one of continuous improvement, consequently

 equipment supplied may vary in detail from this publication.